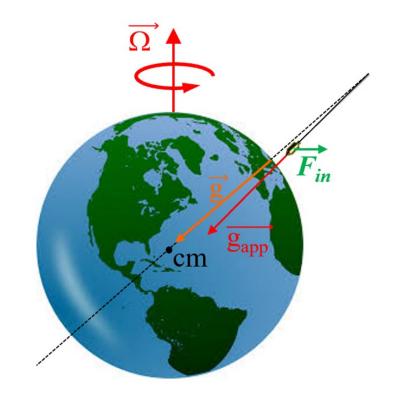


Cours 7 - 02/10/2024

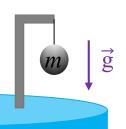
4. Référentiel non-galiléen; loi de Coriolis

- 4.6. Force centrifuge et \vec{g} apparent
- 4.7. Force de Coriolis et chute libre
- 4.8. Phénomènes liés à Coriolis

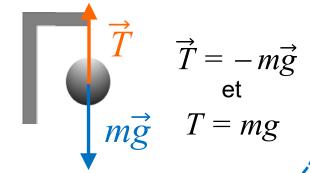


Référentiel en rotation : influence sur un pendule et poids apparent

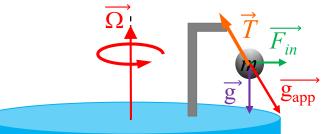
Référentiel galiléen R pas de rotation



$$m\vec{a} = \vec{0} = \vec{T} + m\vec{g}$$



Référentiel non-galiléen R'Le pendule est incliné et indique une en rotation



direction différente de celle de \vec{g} .

L'intensité *T* de la force de tention n'est plus égale au poids (mg).

La masse subit

- i) une force <u>extérieure</u> : la gravitation
- ii) une force fictive : la force centrifuge

La combinaison des deux donne le poids apparent $m\overrightarrow{g}_{app}$, avec \overrightarrow{g}_{app} l'accélération de pesanteur apparente (ou effective).

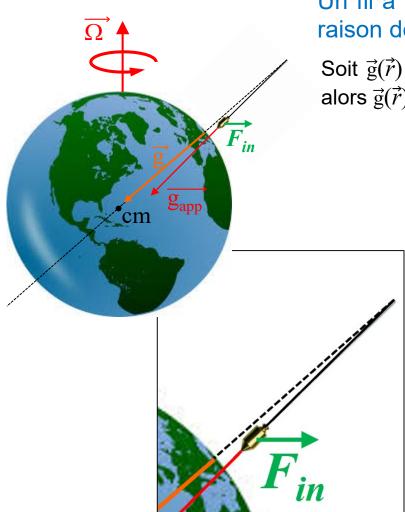
Pour un objet immobile dans $R'(\overrightarrow{v'}=\overrightarrow{0} \text{ et } \overrightarrow{a'}=\overrightarrow{0})$

$$\overrightarrow{F_{in}} = -m\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r'})$$

$$m\overrightarrow{a'} = \overrightarrow{0} = \overrightarrow{F_{ext,sans\ m\overrightarrow{g}}} + m\overrightarrow{g} - m\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r'})$$

$$m\overrightarrow{a'} = \overrightarrow{0} = \overrightarrow{F_{ext,sans\ m\overrightarrow{g}}} + m\overrightarrow{g_{app}}$$

■ g apparent sur la Terre

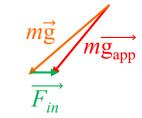


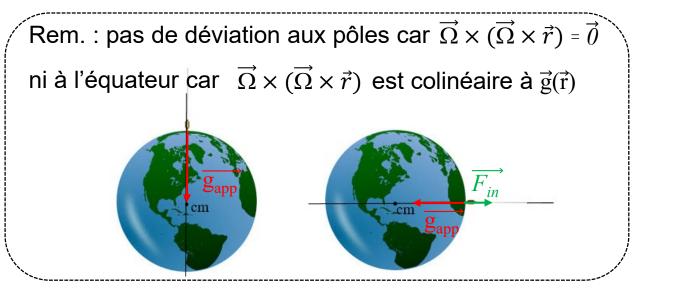
Un fil à plomb ne pointe pas exactement en direction du centre de la Terre en raison de la rotation de celle-ci qui induit une force centrifuge.

Soit $\vec{g}(\vec{r})$ l'accélération due au champ de gravitation, alors $\vec{g}(\vec{r})$ apparent est donné par :

$$\overrightarrow{\mathbf{g}_{app}}(\overrightarrow{r}) = \overrightarrow{\mathbf{g}}(\overrightarrow{r}) - \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$$

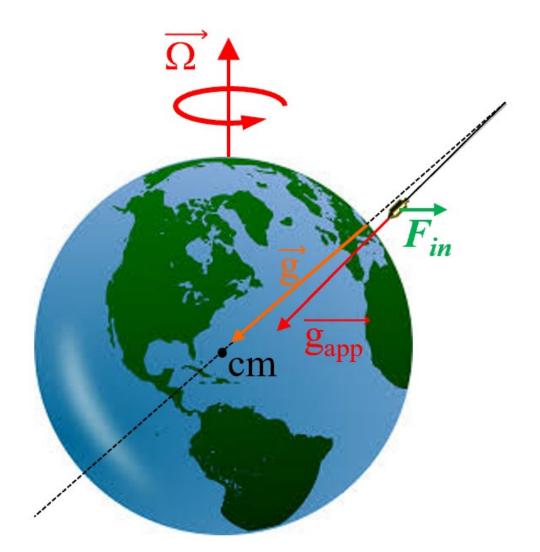
$$\overrightarrow{F_{in}}/m$$





Rem : dans ce qui suit on utilisera la notation \vec{r} , \vec{v} , et \vec{a} pour le référentiel Terre (R')

■ g apparent sur la Terre

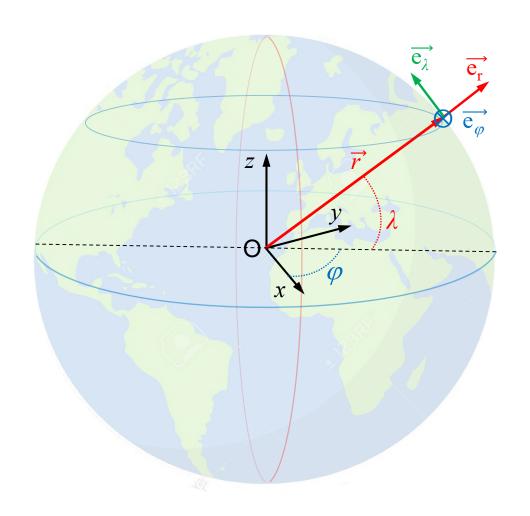


$$\overrightarrow{g_{app}}(\overrightarrow{r}) = \overrightarrow{g}(\overrightarrow{r}) - \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$$

$$\overrightarrow{F_{in}}/m$$

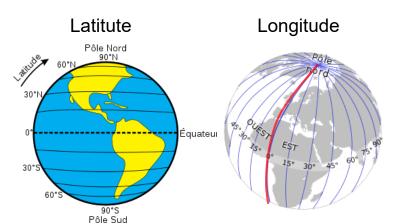
Un pendule subit une accélération centrifuge due à la rotation de la Terre. Par conséquent, il s'écarte légèrement de la direction correspondant à celle de \vec{g} , qui elle pointe au centre de la Terre. Cela conduit à définir la notion de g apparent.

Système de coordonnées terrestres : coordonnées géographiques



On définit un point sur la Terre par les coordonnées suivantes (système de coordonnées sphériques avec des définitions de θ et de la position différentes) :

- l'<u>altitude</u> h ($r = R_{Terre} + h$) $\overrightarrow{e_r}$ définie par rapport au niveau de la mer
- la <u>latitude</u> λ *définie par rapport à l'équateur (\lambda = 0^{\circ})* $\overrightarrow{e_{\lambda}}$
- la <u>longitude</u> φ définie par rapport au méridien de Greenwich ($\varphi = 0^{\circ}$) $\overrightarrow{e_{\varphi}}$



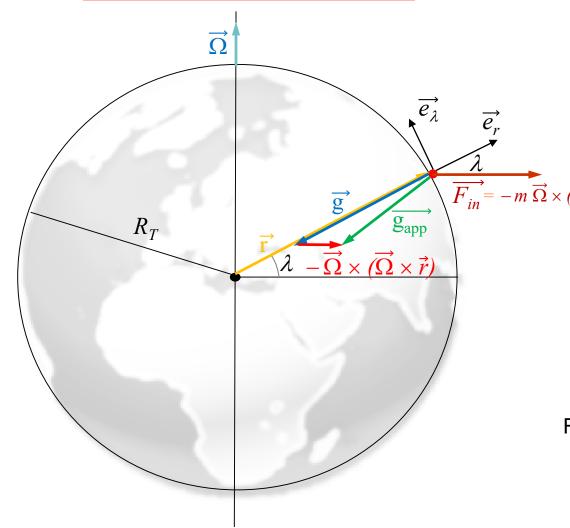
Observatoire de Greenwich (Londres)

vecteurs de base en coordonnées sphériques

■ Calcul de \vec{g} apparent (à la surface de la Terre, $r = R_T + h \approx R_T$)

$$\overrightarrow{\mathbf{g}_{\mathrm{app}}} = -g \overrightarrow{e_r} - \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$$

On cherche à exprimer $-\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$ dans la base $\overrightarrow{e_r} \overrightarrow{e_\lambda}$



$$\overrightarrow{\Omega} \times \overrightarrow{r} \otimes \overrightarrow{\Gamma}$$

$$|\overrightarrow{\Omega} \times \overrightarrow{r}| = \Omega R_T \sin(\pi/2 - \lambda) = \Omega R_T \cos \lambda$$

$$\overrightarrow{F_{in}} = -m \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$$

$$\overrightarrow{\Omega} \times \overrightarrow{r} \longrightarrow \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})$$

$$|-\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r})| = \Omega \Omega R_T \cos \lambda \sin(\pi/2) = \Omega^2 R_T \cos \lambda$$

d'où
$$-\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \overrightarrow{r}) = \Omega^2 R_T \cos \lambda \overrightarrow{u}$$

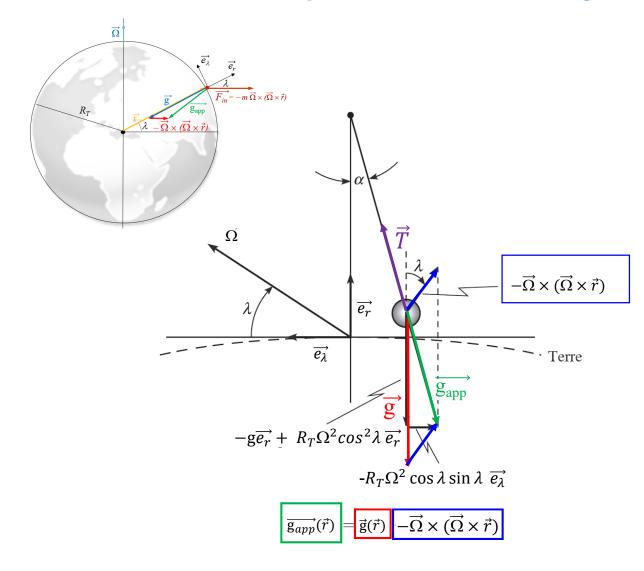
$$\overrightarrow{u} \text{ vecteur unitaire}$$

$$\overrightarrow{u} = -\sin \lambda \overrightarrow{e_{\lambda}} + \cos \lambda \overrightarrow{e_{r}}$$

Finalement
$$\overrightarrow{\mathbf{g}_{\mathrm{app}}} = -g \ \overrightarrow{e_r} + \Omega^2 \ R_T \cos \lambda \ [-\sin \lambda \ \overrightarrow{e_{\lambda}} + \cos \lambda \ \overrightarrow{e_r}]$$

$$= [-g + \Omega^2 \ R_T \cos^2 \lambda] \ \overrightarrow{e_r} - \Omega^2 \ R_T \cos \lambda \sin \lambda \ \overrightarrow{e_{\lambda}}$$
déviation

■ Calcul de l'angle de déviation de g apparent



Le fil à plomb indique la direction de $\overrightarrow{g_{app}}$

- La déviation est vers le Sud dans l'hémisphère Nord et vers le Nord dans l'hémisphère Sud
- La déviation est nulle à l'équateur et aux pôles

La tension \overrightarrow{T} est reliée à l'intensité de \overrightarrow{g}_{app}

$$g_{app,p\hat{0}le} = 9,81 \frac{m}{s^2}$$

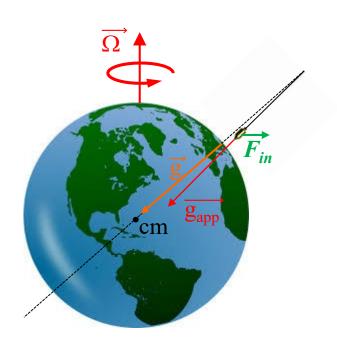
$$g_{app, \acute{e}quateur} = 9,78 \frac{m}{s^2}$$

<u>Déviation</u> par rapport à $\vec{g}(\vec{r})$: angle α entre \vec{g} et \vec{g}_{app}

$$\tan \alpha = \frac{R_T \Omega^2 \cos \lambda \sin \lambda}{g - R_T \Omega^2 \cos^2 \lambda} \approx 1.7 \cdot 10^{-3} \sin(2\lambda)$$

 $rem: R_T\Omega^2 \cos^2 \lambda \ll g$

■ Résumé : 2nd loi de Newton avec g apparent dans le référentiel "Terre



$$m\vec{a} = \overrightarrow{F_{ext,sans\,m\vec{g}}} + m\vec{g} + \overrightarrow{F_{in}} + \overrightarrow{F_{cor}}$$

$$m\vec{a} = \overrightarrow{F_{ext,sans\ m\vec{g}}} + m\vec{g} - m\overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \vec{r}) + \overrightarrow{F_{cor}}$$

On pose :
$$\overrightarrow{g_{app}}(\vec{r}) = \vec{g}(\vec{r}) - \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \vec{r})$$

$$m\vec{a} = \overrightarrow{F_{ext,sans\,m\vec{g}}} + m\overrightarrow{g_{app}} + \overrightarrow{F_{Cor}}$$

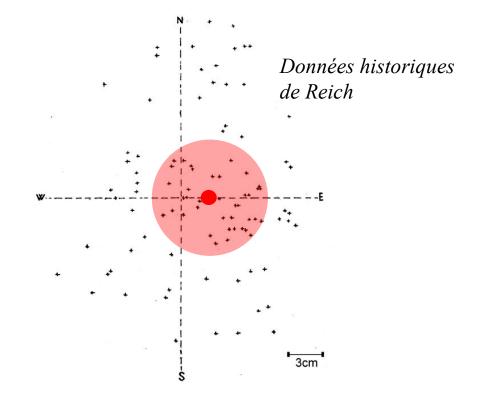
Attention: ici on pose \vec{a} le vecteur accélération dans le référentiel « Terre » ($\vec{a'}$ dans les cours 5 et 6)

Corps en chute libre

En 1833, Reich fait une expérience qui consiste à laisser tomber une bille dans un puits de mine d'une profondeur de 158 m. Il observe une déviation moyenne vers l'Est de 2,8 cm du point d'impact par rapport à la verticale du point de lâcher donnée par un fil à plomb.

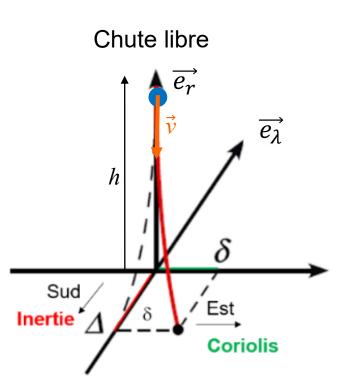
puits de mine

Ferdinand Reich 1799 - 1882



<u>Source</u>: J.G.Hagen, La rotation de la terre, ses preuves mécaniques anciennes et nouvelles, Tipografia Poliglotta Vaticana, Roma(1911)

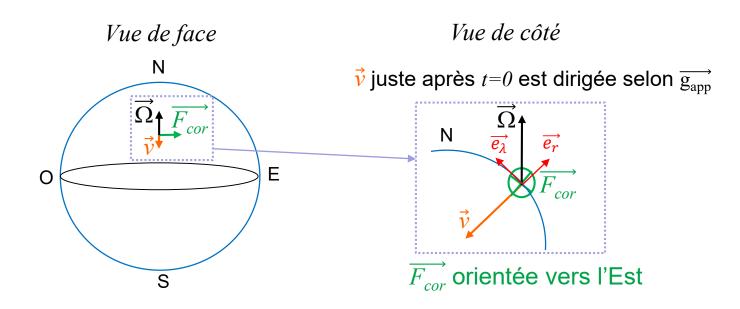
Corps en chute libre



Hémisphère nord

Déviation due à la force de Coriolis pour un point à Lausanne

Force de Coriolis : $\overrightarrow{F}_{cor} = -2 \ m \ \overrightarrow{\Omega} \times \overrightarrow{v}$



La force de Coriolis entraîne une déviation vers l'Est du point de chute dans l'hémisphère nord (ou sud).

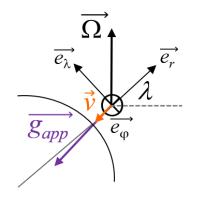
Corps en chute libre

Calcul de la déviation vers l'Est

Dans ce calcul, on applique la 2^{nd} loi de Newton modifiée pour tenir compte de la rotation de la Terre en ajoutant la force d'inertie, qui sera incluse dans g_{app} , et la force de Coriolis.

<u>Remarque</u>: pour simplifier les écritures, nous utiliserons \vec{a} , \vec{v} , \vec{r} à la place de $\vec{a'}$, $\vec{v'}$, $\vec{r'}$

Conditions initiales : $\vec{v} = \vec{0} \ \hat{a} \ t = 0$ et $\vec{r} = \vec{0} \ \hat{a} \ t = 0$



$$igotimes \overrightarrow{e_{\phi}}$$
 dirigé vers l'Est

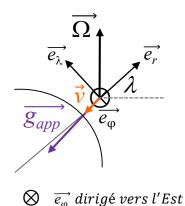
$$\begin{split} m\vec{a} &= \sum \vec{F}_{ext} + \vec{F}_{Cor} + \vec{F}_{in} \\ \text{ou encore} \quad m\vec{a} &= m\overrightarrow{g_{app}} + \overrightarrow{F}_{cor} + \overrightarrow{F}_{in} \\ \text{ou encore} \quad m\vec{a} &= m\overrightarrow{g_{app}} + \overrightarrow{F}_{cor} \quad \text{avec la force d'inertie (centrifuge) incluse dans } \overrightarrow{g_{app}} \\ \text{avec} \quad \overrightarrow{F_{cor}} &= -2 \ m \ \overrightarrow{\Omega} \times \overrightarrow{v} = -2 \ m \ \overrightarrow{\Omega} \times \frac{d\overrightarrow{r}}{dt} \\ \text{Soit} \quad \overrightarrow{a} &= \frac{d^2\overrightarrow{r}}{dt^2} = \overrightarrow{g_{app}} - 2 \ \overrightarrow{\Omega} \times \frac{d\overrightarrow{r}}{dt} \end{split}$$

On intègre une 1ère fois :
$$\vec{v} = \frac{d\vec{r}}{dt} = \overrightarrow{g_{app}}t - 2\overrightarrow{\Omega} \times \vec{r} + \overrightarrow{cte}$$
 \longrightarrow On intègre une 2ème fois : $\vec{r} = \frac{1}{2}\overrightarrow{g_{app}}t^2 - 2\overrightarrow{\Omega} \times \int_0^t \vec{r} \, dt + \overrightarrow{cte}$

$$avec \ \overrightarrow{cte} = \overrightarrow{0} \ car \ \overrightarrow{v}(t=0) = \overrightarrow{0}$$

on fixe l'origine au point de départ, donc $\vec{r} = \vec{0}$ à t = 0 d'où $\vec{cte} = \vec{0}$

L'équation de mouvement est
$$\vec{r} = \frac{1}{2} \overrightarrow{g_{app}} t^2 - 2 \overrightarrow{\Omega} \times \int_0^t \vec{r} \, dt$$



On suppose que la déviation latérale due à Coriolis est faible par rapport à la hauteur de chute. La trajectoire est donc proche d'une chute libre dans un référentiel galiléen.

On peut alors écrire :
$$\overrightarrow{r} \approx \frac{1}{2} \overrightarrow{g_{app}} t^2$$

$$\overrightarrow{r} = \frac{1}{2} \overrightarrow{g_{app}} t^2 - 2 \overrightarrow{\Omega} \times \int_0^t \frac{1}{2} \overrightarrow{g_{app}} t^2 dt$$

$$\overrightarrow{r} = \frac{1}{2} \overrightarrow{g_{app}} t^2 - \overrightarrow{\Omega} \times \overrightarrow{g_{app}} \int_0^t t^2 dt = \frac{1}{2} \overrightarrow{g_{app}} t^2 + \frac{\Omega g_{app} t^3}{3} \cos \lambda \overrightarrow{e_{\phi}}$$

La déviation δ est suivant $\overrightarrow{e_{\omega}}$ c'est à dire vers l'Est

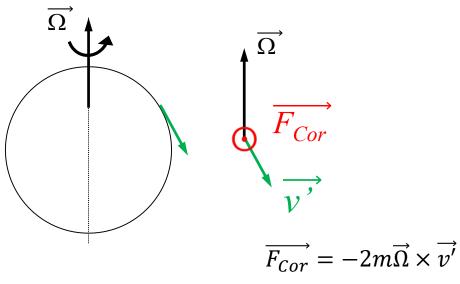
$$\delta = \frac{\Omega g_{app} t^3}{3} \cos \lambda = \frac{2}{3} \Omega ht \cos \lambda \qquad \text{avec } t^2 \approx \frac{2h}{g_{app}}$$

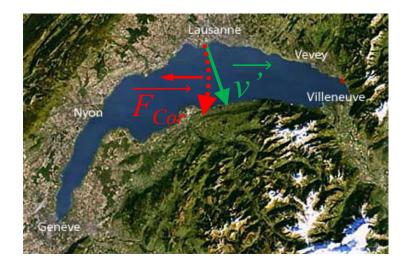
Le calcul donne 2,6 cm pour 158 m de chute libre, soit très proche de la valeur expérimentale mesurée par Reich (2,8 cm)

4.8. Phénomènes liés à Coriolis

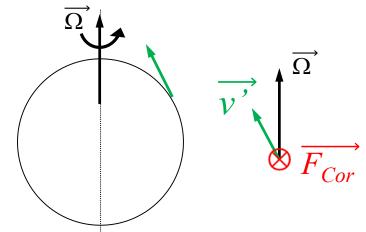
■ Déviation de la trajectoire sous l'effet de l'accélération de Coriolis

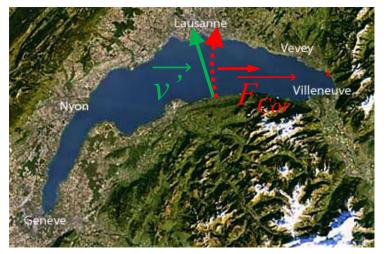
Lancer vers le Sud





Lancer vers le Nord



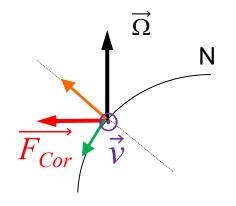


4.8. Phénomènes liés à Coriolis

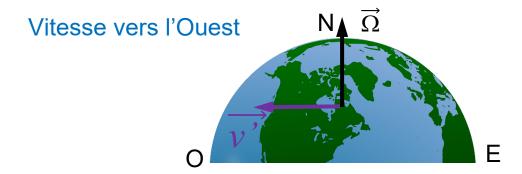
■ Déviation de la trajectoire sous l'effet de l'accélération de Coriolis

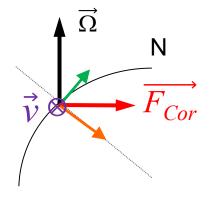
$$\overrightarrow{F_{Cor}} = -2m\overrightarrow{\Omega} \times \overrightarrow{v}$$





Déviation vers le Sud et vers le haut



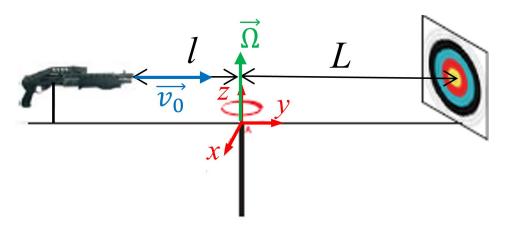


Déviation vers le Nord et vers le bas

4.8. Phénomènes liés à Coriolis

Déviation pour un tir dans un référentiel en rotation

On cherche à déterminer la distance correpondant à la déviation de la balle.

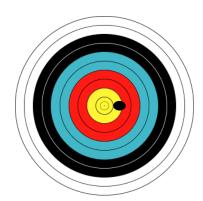


$$l = 40 \text{ cm}$$

$$L = 110 \text{ cm}$$

$$v_0 = 250 \text{ ms}^{-1}$$

$$\Omega=\pi$$
 s⁻¹



$$m \vec{a} = m \vec{\mathrm{g}} + \overrightarrow{F_{in}} + \overrightarrow{F_{cor}}$$
 2nd loi de Newton dans un référentiel non-galiléen $\vec{a} = \vec{\mathrm{g}} - \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r} \right) - 2 \vec{\Omega} \times \overrightarrow{v_0}$

On néglige la force centrifuge (faible et pas d'impact sur la direction) :

$$\vec{a} = \vec{g} - 2\vec{\Omega} \times \vec{v_0} = \vec{g} + 2\Omega v_0 \vec{e_x}$$

Temps pour parcourir la distance totale : $t = \frac{l+L}{v_0}$

Déviation :
$$d = \Omega \frac{(l+L)^2}{v_0} = 2.8 \text{ cm}$$
 vers la droite